

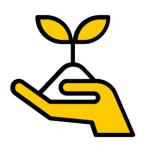
- ► Kurzvorstellung VNG
- Aktueller Blick auf Wasserstoffhochlauf
- ► SMR und ATR Technologie
- ▶ Politischer Kontext
- ▶ Fazit

WER WIR SIND

VNG ist ein europaweit aktiver Unternehmensverbund mit über 20 Gesellschaften, einem breiten, zukunftsfähigen Leistungsportfolio in Gas und Infrastruktur sowie einer über 60-jährigen Erfahrung im Energiemarkt.

Der Konzern mit Hauptsitz in Leipzig beschäftigt rund 1.500 Mitarbeiter und erzielte im Geschäftsjahr 2021 einen abgerechneten Umsatz von rund 18,5 Mrd. Euro.

JAHRESBILANZ 2021


18,5 Mrd. €
Umsatz (nach IFRS)
abgerechnet

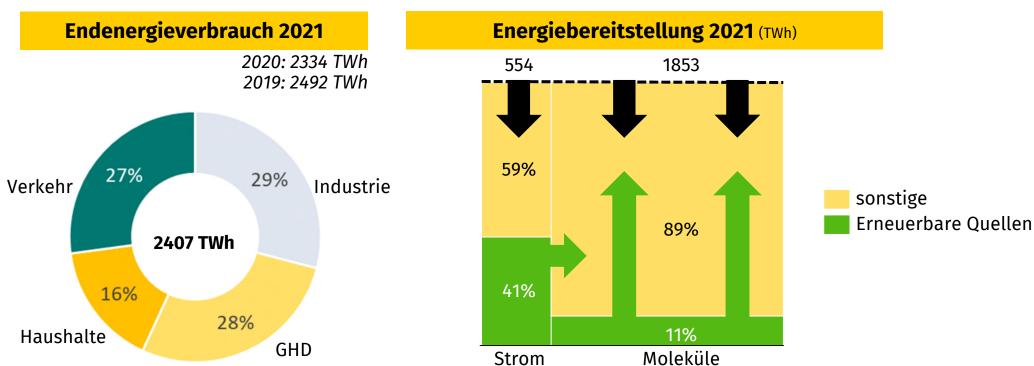
225 Mio. €
Adj. EBIT (nach IFRS)

141 Mio. €
Konzernergebnis (nach IFRS)

197 Mio. €
Investitionen

Stand: 31.12.2021

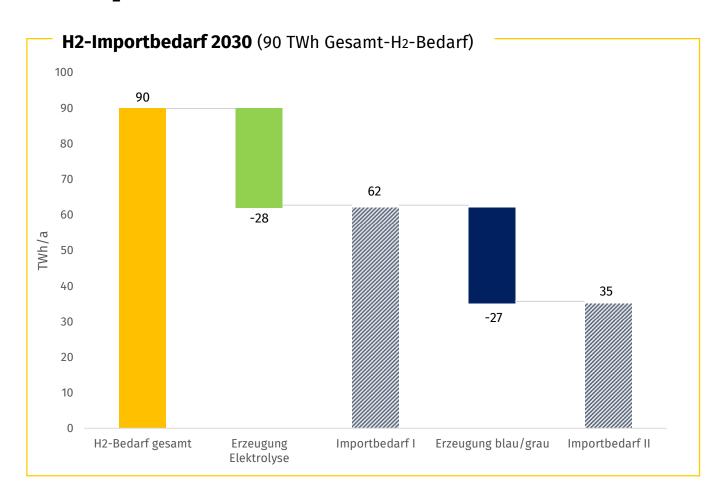
GESCHÄFTSBEREICHE



- ► Kurzvorstellung VNG
- ► Aktueller Blick auf Wasserstoffhochlauf
- ► SMR und ATR Technologie
- ▶ Politischer Kontext
- ▶ Fazit

DIE ENERGIEWENDE BENÖTIGT "MOLEKÜLE"

... eine alleinige Fokussierung auf den Strom reicht nicht aus


Schlussfolgerungen

- > Ca. 82% des Endenergieverbrauchs sind derzeit fossilen Ursprungs und ein Großteil davon wird über Importe bereitgestellt
- > Zielerreichung ist mit einem "all-electric"-Ansatz nicht möglich; es braucht weiterhin gasbasierte Energieträger
- > Erneuerbaren und dekarbonisierten Gasen kommt in allen Sektoren eine zentrale Rolle als Energieträger, Rohstoff und Energiespeicher zu

HEIMISCHE PRODUKTION UND IMPORTE NÖTIG

..., um H₂-Bedarfe bis 2030 zu decken und Klimaneutralitätsziele langfristig zu erreichen

Einschätzung

- Bei einer Nachfrage von 90 TWh¹⁾ in 2030, und einer inländischen Produktion von 28 TWh grünem Wasserstoff (Elektrolyse-Kapazitäten: 10 GW) entsteht eine **Angebotslücke von 62 TWh**, die durch Importe oder der Produktion von nicht-grünem Wasserstoff gedeckt werden muss
- Unter der Annahme einer Erzeugung von 27 TWh CO2-armen und grauem H2 verbleibt ein Importbedarf von 35 TWh.
- Es ist wahrscheinlich, dass diese Menge per Trailer nicht kosteneffizienter bereitzustellen ist als per Pipeline.
- > Infrastrukturanpassung wird sich schrittweise vollziehen

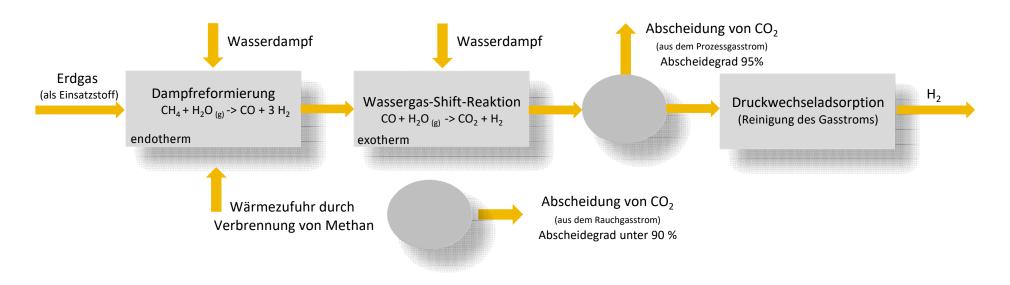
Annahmen

Elektrolyse (Zielstellung Bundesregierung)

- 10 GW installierte Leistung
- > 4000 Vollbenutzungsstunden
- > 70 % Wirkungsgrad

Blauer H₂ und grauer H₂

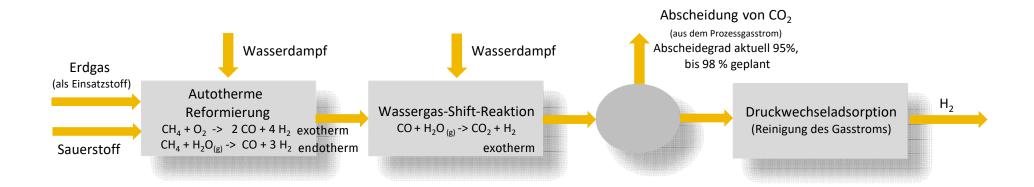
2030 werden ca. 62 TWh an grünem H2 benötigt, um Klimaneutralität in 2045 zu erreichen -> Restbedarf (27 TWh) muss anderweitig erzeugt werden (Öko, Prognos, WI 2021)



- ► Kurzvorstellung VNG
- Aktueller Blick auf Wasserstoffhochlauf
- ► SMR und ATR Technologie
- ▶ Politischer Kontext
- ▶ Fazit

WASSERSTOFF AUS ERDGAS - ETABLIERTES VERFAHREN

Technologie-Überblick, Steam Methane Reforming (SMR) mit CO₂-Abscheidung



- ► CO₂ muss aus dem **Prozessgasstrom** der Wasserdampf-Shift-Reaktion (Reaktion 2) und dem **Rauchgas** entfernt werden, welches bei der Verbrennung von Methan als Wärmequelle für den Prozess entsteht.
- ▶ Stand der Technik: insgesamt **bis zu 90 % des CO₂ können aus den beiden Gasströmen kombiniert entfernt** werden, wobei die Abscheidung aus dem Rauchgasstrom mit einem Stickstoffgehalt von 78 % wegen der geringen CO2-Konzentration am aufwändigsten ist.

VERBESSERTE CO₂-ABSCHEIDUNGSRATE DURCH ATR-TECHNOLOGIE

Technologie-Überblick, autothermal reforming (ATR)

- ► Aus dem **Prozessgasstrom können bis zu 95 % CO2 entfernt** werden
- ► Für neue Projekte wird mit Abscheidungsquoten von 98 % gerechnet

ATR MIT VORTEILEN GEGENÜBER SMR

Hohen Abscheidungsraten von künftig bis zu 98% zeigen, dass blauer Wasserstoff einen Beitrag zur schnellen Reduktion von Treibhausgasemissionen beiträgt

	SMR	ATR
Status quo	 SMR ist etablierte Technologie SMR + CCS, TRL 7-8 	 Technologie ist verfügbar, muss aber großtechnisch noch erprobt werden
CO ₂ -Abscheidung	 Beide Prozesse lassen sich nicht effizient nach kleinmaßstäbliche, dezentrale, Anlagen nicht zu können. 	•
Skalierbarkeit und Kosteneffizienz	 Geringere Kosteneffizienz bei CCS durch CO₂-Abscheidung aus zwei Gasströmen. Ohne CCS sind die Investitionskosten niedriger als bei ATR. 	 Höhere Kosteneffizienz bei CCS durch kostengünstigere Abscheidung von CO₂ aus nur einem Gasstrom. Investitionskosten trotz Luftzerleger ähnlich wie bei SMR + CCS, da nur eine CO₂-Abscheidung benötigt wird.

- ► Kurzvorstellung VNG
- Aktueller Blick auf Wasserstoffhochlauf
- ► SMR und ATR Technologie
- ► Politischer Kontext
- ▶ Fazit

VIER GRÜNDE FÜR BLAUEN WASSERSTOFF ALS TEIL DER LÖSUNG

Stand der aktuellen Diskussion in Deutschland (August 2022)

	Bisher verwendete Argumente	2022 - Neubewertung seit dem russischen Angriffskrieg
¥	Blauer Wasserstoff ist klimafreundlich	+ +
• • • • • • • • • • • • • • • • • • •	Blauer Wasserstoff ist wettbewerbsfähig	+
•	Blauer Wasserstoff steht in kurzer Zeit in großen Mengen zur Verfügung:	+
1000	Blauer Wasserstoff ermöglicht nachhaltige Transformation geopolitischer Partnerschaften	- /+

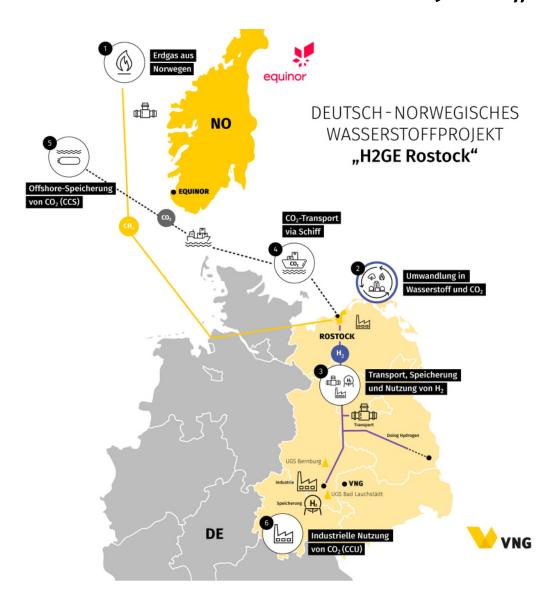
GRÜNER VS. BLAUER H₂ IN DER DEUTSCHEN POLITIK

Die Regierung zielt energisch auf den Hochlauf von grünem Wasserstoff ab. Blauer Wasserstoff wird mit Skepsis betrachtet, Blau jedoch nicht kategorisch ausgeschlossen.

Wörtliche Erwähnungen:

40 mal grüner H₂

3 mal blauer H₂


- "Aus Sicht der Bundesregierung ist nur Wasserstoff, der auf Basis erneuerbarer Energien produziert wird ("grüner" Wasserstoff), langfristig nachhaltig. [...] Gleichzeitig geht die Bundesregierung aber davon aus, dass in den nächsten zehn Jahren ein globaler und europäischer Wasserstoffmarkt entstehen wird. CO2-neutraler (z.B. "blauer" oder "türkis") Wasserstoff wird ebenfalls an diesem Markt gehandelt."
- ▶ Nationale Wasserstoffstrategie, 2020
- Die Besorgnis über blauen Wasserstoff; Gründe: sicheren Speicherung des Kohlenstoffs, die vorgelagerten Emissionen sowie Lock-in-Effekte bei Investitionen in die Erdgasinfrastruktur.
- > Regierungsparteien sind sich nicht völlig einig. Grünen: ursprünglich nur für grünen Wasserstoff; FDP: auch blauen und türkisfarbenen Wasserstoff; Position der SPD nicht klar.
- Oppositionspolitiker: "In diesem Zusammenhang wird es sicherlich Themen geben, die hier in den kommenden Monaten diskutiert werden. CCU, CCS, das Thema "klimaneutraler blauer Wasserstoff". [...] Die Speicher in Europa werden gebaut", CDU/CSU-Bundestag, Mai 2022 im Deutschen Bundestag

- ► Kurzvorstellung VNG
- Aktueller Blick auf Wasserstoffhochlauf
- ► SMR und ATR Technologie
- ▶ Politischer Kontext
- **►** Fazit

VNG VERFOLGT MIT DEM PARTNER EQUINOR DEN ANSATZ DER ATR-TECHNOLOGIE IM PROJEKT "H2 GE ROSTOCK"

Projektumfang

- Der ATR produziert 8,6 TWh/a Wasserstoff unter Verwendung von 11,2 TWh Erdgas als Brennstoff
- ➤ Abtransport des CO₂ via Schiff, Verpressen des CO₂ in tiefe offshore Aquifere (CCS) sowie Verwendung durch die chemische Industrie vor Ort (CCU)
- Der notwendige Sauerstoff wird durch die Elektrolyse sowie einem Luftzerleger dem ATR zur Verfügung gestellt. Der Grünstrom zum Betrieb der Anlage kann von Offshore-Windparks bezogen werden
- Der nicht vor Ort benötigte Wasserstoff wird mittels Transportleitungen (IPCEI-Projekte) zu den Abnehmern bspw. im mitteldeutschen Chemiedreieck transportiert.

FAZIT

- Das Energiesystem der Zukunft braucht "Moleküle" und Wasserstoff stellt für viele Endanwendungen eine attraktive Lösungsoption dar.
- Für den Hochlauf des Wasserstoffmarktes werden frühzeitig verlässliche und wettbewerbsfähige H2-Mengen benötigt, die mit Wasserstoff auf Basis der ATR-Technologie bereitgestellt werden können.
- Mit einer Abscheidungsrate von bis zu 98% besteht mit dem ATR-Prozess eine effiziente CO₂-Minderunergsoption, die dringend benötigte wird, um die auf fossilen Energieträgern angewiesene Industrie sehr schnell bei der Senkung von Emissionen zu unterstützen.
- Politisch wird aktuell grüner Wasserstoff unterstützt und gefördert; blauer Wasserstoff ist nicht ausgeschlossen und wird vermehrt als notwendige Technologie für den Hochlauf angesehen.
- Das Projekt **H2 GE Rostock** zeigt, wie Kohlenstoffkreisläufe geschlossen werden können und frühzeitig Wasserstoff zur Verfügung steht, damit Infrastruktur und Transformationspfade in Industrie verlässlich umgesetzt werden können.