

Electrolysis / eFuels

٠

Pathways to synthetic eFuels

Karl-Josef Kuhn, Siemens Energy

Siemens Energy is a registered trademark licensed by Siemens AG.

© Siemens Energy, 2020

Renewables are playing a minor role in the global energy supply **SIEMENS**

Even developed countries are not really GREEN Energy Supply of Germany still about 82% Fossil

Quelle: Dr. Jörg Fabri, ÖGEW Vortrag 13.11.2020, Umweltbundesamt 2019

Various countries demonstrate strong potential for PtX production / exports ...

Source: Frontier Economics

Direct electricity use is most efficient but electricity has highest cost for transport/storage and is not suited for all applications

SIEMENS

energy

9000HL: How much H2 onsite storage is needed?

Assumptions: Tube trailer = 500 kg H₂, Pipeline¹: 1.4 Diameter pipeline at 100 bar (12 ton H₂/km), NASA Spherical Liquid Cryogenic Tank¹: 230 tons H₂, Teeside Salt Caverns² 810 tons (210,000 m³ at 45 bar) 1. J. Andersson and S. Gronkvist, "Large-scale storage of hydrogen," *International Journal of Hydrogen Energy*, vol. 44, pp. 11901-11919, 2019. 2. E. Wolf. "Large-scale hydrogen energy storage," J. Garche (Ed.), *Electrochemical energy storage for renewable sources and grid balancing*, Elsevier, Amsterdam (2015), pp. 129-142

Siemens Energy active on several routes towards green synthetic fuels

TRL: Technology readiness level * (Fischer-Tropsch, Sabatier, Methanol, Fermentation, Haber-Bosch ...) 1) DME/OME-synthesis, olefin-synthesis, oligomerization, hydrotreating,...

Silyzer 300 – the next paradigm in PEM electrolysis

17.5 мw

Power demand per full Module Array (24 modules)

75 %

System efficiency¹ (higher heating value)

24 modules to build a full Module Array

340 kg

hydrogen per hour per full Module Array (24 modules)

Silyzer 300 – Module Array (24 modules)

Silyzer 300 – latest and most powerful product line in the double-digit megawatt class

High performance

High efficiency: system >75% Modular: H₂ production range 100-2,000 kg/h

Maintenance friendly

Maintenance free module 80,000 OH¹ Easy exchange of modules No cleaning effort World wide service coverage

Digitally enabled

Data Driven Operation and Service Secure Remote Support Mindsphere

High availability

Advanced design for low degradation Robust industrial design

Flexible operation

Fast start-up and shut-down High dynamics High Gas purity No Ex-zone within PEM Array No hazardous chemicals Power factor compensation No permanent operating personnel required

¹ Operating Hours

H2FUTURE – a European Flagship project for generation and use of green hydrogen

6 mw

Power demand based on Silyzer 300

1.200 Nm³

of green hydrogen per hour

Project

- Partner: VERBUND (coordination), voestalpine, Austrian Power Grid (APG), TNO, K1-MET
- Country: Austria
- Installed: 2019
- Product: Silyzer 300

Challenge

- Potential for "breakthrough" steelmaking technologies which replace carbon by green hydrogen as basis for further upscaling to industrial dimensions
- Installation and integration into an existing coke oven gas pipeline at the steel plant
- High electrolysis system efficiency of 80%

Solutions

- Operation of a 12-module array Silyzer 300
- Highly dynamic power consumption enabling grid services
- State-of-the-art process control technology based on SIMATIC PCS 7

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735503. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovative programme and Hydrogen Europe and NERGHY.

Use cases

Hydrogen for the steel making process

Supply grid services

Our Electrolyzer portfolio scales up by factor 10 every few yearsSIEMENSProduct portfolio and technical specificationCOCIGY

- 1) Operating Hours; Data OH & Nm³ as of Dec. 2019
- 2) System efficiency
- 3) Target range for development

NexGen Electrolysis: direct electroreduction of CO2 for carbon neutral production of CO, chemicals and syn fuels

SIEMENS COCIGY

CO Electrolysis

 Use of CO2 and electricity from renewables as feedstock in the production of CO for direct use and CO as an intermediate towards chemicals and synthetic fuels

Benefits

- Zero emission technology
- Excellent scalability to customer demand
- Scale-up to very high volume applications
- Resolves CO supply chain restrictions resulting from CO transport and storage regulations > Decentralized on-site CO production

CO Electrolyzer delivered to Evonik ➢ Project Rheticus

Rheticus: BMBF¹⁾ funded project between Siemens Energy & Evonik for the production of butanol and hexanol.

- Electrochemical conversion of carbon dioxide into carbon monoxide
 - Carbon dioxide turns from greenhouse gas into feedstock
- Microorganisms are used to produce specialty chemicals
- Target for future applications: Synthetic fuels and bulk chemicals

2.5 kW power consumption of CO_2 to COelectrolyzer for the production of ~0.3kg CO/h

1) BMBF: Bundesministerium für Bildung und Forschung

The world's first fully automated CO electrolyzer from Siemens Energy

Federal Research Minister Anja Karliczek said on the occasion of the commissioning in Marl: "I am delighted that we have given the go-ahead today in Marl for a new test facility at the very highest level" ... "

CO Electrolyzer Roadmap

112 R.W.

C EVONIK

 $\underline{2}$ > Synthetic fuels

<u>1</u> > From specialty to bulk chemicals & industrial gases

Active area / cell 300 cm ²	Active area / cell >3000 cm ²		Active area / cel >>3000 cm ²
Scale-up	•	Commercialization	
mid 2020	end 2020	2026	2030
2.5 kW	3 – 5 kW	0.5 – 1 MW	X0 – x00 MW
Specialty Chemicals	Pilot operational	1 st industrial application	Start concept phase
Siemens Energy – 🥥 EVONIK	@ Campus Erlangen	Customer Pilot	for CO electrolysis in
BMBF funded project Rheticus	Application: 0.5 – 10 MW	Chemicals / Industrial Gases	GTL plants

Transforming the CO electrolyzer into a CO₂ to HC (fuel precursor) electrolyzer by exchange of catalyst

Business Opportunity

 Use of CO₂, H₂O and renewable energy as feedstock for electrocatalytic synthesis of hydrocarbons to be used as CO₂-neutral base chemicals or fuels.

Benefits

- Low temperature process with potential attractive energy efficiency
- Environmentally friendly, zero-emission technology
- Potential to disrupt thermo-catalytic chemical processes
- Strong synergies to CO electrolysis

Achievements:

- First lab test cell running (> 168h)
- Current achieved FE > 70% (HC & Alcohols)

Siemens Energy is a registered trademark licensed by Siemens AG.

Hydrocarbon Electrolyzer (Ethylene / Ethanol)➤ Roadmap and Potential

Thank you for your attention!

Additional links

Siemens Energy Magazine (Video included): https://www.siemens-energy.com/global/en/news/magazine/2020/rheticus-worlds-first-automated-co2-electrolyzer.html

<u>German Federal Ministry for Research</u> <u>https://www.bmbf.de/de/fuer-eine-klimafreundliche-industrie-kohlendioxid-und-wasserstoff-als-rohstoffe-fuer-12543.html</u>

Nature Video on Youtube: https://www.youtube.com/watch?v=VK-dULEK-rc&list=ULaV07hCF7-AQ&index=81